Head impact exposure comparison between male and female amateur rugby league participants measured with an instrumented patch

Main Article Content

King DA*
Hume PA
Cummins C
Clark T
Gissane C
Hecimovich M

Abstract

Background: Epidemiological studies report that females experience greater rates of concussion when compared with males. Biomechanical factors may result in greater post-impact head velocities and accelerations for a given force for females when compared with males.


Purpose: To quantify the magnitude, frequency, duration and distribution of impacts to the head and body in rugby league match activities for females versus males.


Design: Prospective descriptive epidemiological study.


Methods: 21 female and 35 male amateur rugby league players wore wireless impact measuring devices (X2Biosystems; xPatch) behind their right ear over the mastoid process during match participation across a single season. All impact data were collected and downloaded for further analysis.


Results: Male amateur rugby league players experienced more head impacts than female amateur rugby league players (470 ±208 vs. 184 ±18; t(12)=-3.7; p=0.0028; d=1.94) per-match over the duration of the study. Male amateur rugby league players recorded a higher median resultant Peak Linear Acceleration (PLA(g)) (15.4 vs. 14.6 g; F(824,834)=51.6; p<0.0001; t(1658)=-3.3; p=0.0012; d=0.10) but a lower median resultant Peak Rotational Acceleration (PRA(rad/s2) (2,802.3 vs. 2,886.3 rad/s2; F(831,827)=3.1; p<0.0001; t(1658)=5.7; p<0.0001; d=0.13) when compared with female amateur rugby league players


Conclusion: Females recorded lower median values for PLA(g) and Head Impact Telemetry severity profile (HITSP) for all positional groups but had a higher PRA(rad/s2) for Hit-up Forwards (HUF) and Outside Backs (OSB’s) when compared with male HUF and OSB’s. Females also recorded more impacts to the side of the head (48% vs. 42%) and had a higher 95th percentile resultant PRA(rad/s2) (12,015 vs. 9,523 rad/s2) to the top of the head when compared with male rugby league players.

Article Details

DA, K., PA, H., C, C., T, C., C, G., & M, H. (2019). Head impact exposure comparison between male and female amateur rugby league participants measured with an instrumented patch. Journal of Sports Medicine and Therapy, 4(1), 024–037. https://doi.org/10.29328/journal.jsmt.1001039
Research Articles

Copyright (c) 2019 King DA, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Gardner A, Iverson G, Levi C, Schofield PW, Kay-Lambkin F, et al. A systematic review of concussion in rugby league. Br J Sports Med. 2015; 49: 495-498. Ref.: https://tinyurl.com/y6svftx4

King D, Hume P, Gissane C, Clark T. Semi-professional rugby league players have higher concussion risk than professional or amateur participants: A pooled analysis. Sports Med. 2017; 47:197-205. Ref.: https://tinyurl.com/y5x2tfp5

King D, Gabbett T. Injuries in the New Zealand semi-professional rugby league competition. NZ J Sports Med. 2009; 36: 6-15. Ref.: https://tinyurl.com/y3lbvqqr

Gissane C, Jennings D, Jennings S, White J, Kerr K. Physical collisions and injury rates in professional super league rugby, the demands of different player positions. Clev Med J. 2001; 4: 147-155.

King D, Hume P, Clark T. Video analysis of tackles in professional rugby league matches by player position, tackle height and tackle location. Int J Perform Anal Sport. 2010; 10: 214-254. Ref.: https://tinyurl.com/yxu7eq4x

King D, Hume P, Milburn P, Guttenbeil D. Match and training injuries in rugby league: A review of published studies. Sports Med. 2010; 40: 163-178. Ref.: https://tinyurl.com/y54r22ct

Dick R. Is there a gender difference in concussion incidence and outcomes? Br J Sports Med. 2009; 43(Suppl 1): i46-i50. Ref.: https://tinyurl.com/yxvorv8o

Eckner JT, O’Connor KL, Broglio SP, Ashton-Miller JA. Comparison of head impact exposure between male and female high school ice hockey athletes. Am J Sports Med. 2018; 46: 2253-2262. Ref.: https://tinyurl.com/yy895qxx

Broglio S, Eckner J, Kutcher J. Field-based measures of head impacts in high school athletes. Curr Opin Pediatr. 2012; 24: 702-708. Ref.: https://tinyurl.com/y22z95hs

Rowson S, Duma S. Brain injury prediction: Assessing the combined probability of concussion using linear and rotational head acceleration. Ann Biomed Eng. 2013; 41: 873-882. Ref.: https://tinyurl.com/y4bmhp7r

Broglio S, Sosnoff J, Shin S, He X, Alcaraz C, et al. Head impacts during high school football: A biomechanical assessment. J Athl Train. 2009; 44: 342-349. Ref.: https://tinyurl.com/y4kb4ack

Crisco J, Wilcox B, Beckwith J, Beckwith JG, Chu JJ, et al. Head impact exposure in collegiate football players. J Biomech. 2011; 44: 2673-2678. Ref.: https://tinyurl.com/y2n8otz9

Daniel R, Rowson S, Duma S. Head impact exposure in youth football. Ann Biomed Eng. 2012; 40: 976-981. Ref.: https://tinyurl.com/y5z22cmk

Rowson S, Duma S, Beckwith J, Chu JJ, Greenwald RM, et al. Rotational head kinematics in football impacts: An injury risk function for concussion. Ann Biomed Eng. 2012; 40: 1-13. Ref.: https://tinyurl.com/y3qvsnyy

Chrisman S, Mac Donald C, Friedman S, Andre J, Rowhani-Rahbar A, et al. Head impact exposure during a weekend youth soccer tournament. J Child Neurol. 2016; 31: 971-978. Ref.: https://tinyurl.com/y2j9m7ly

Hanlon E, Bir C. Real-time head acceleration measurements in girls youth soccer. Med Sci Sports Exerc. 2012; 44: 1102-1108. Ref.: https://tinyurl.com/yy2f2rcm

Reed N, Taha T, Keightley M, Duggan C, McAuliffe J, et al. Measurement of head impacts in youth ice hockey players. Int J Sports Med. 2010; 31: 826-833. Ref.: https://tinyurl.com/y4ts7sd4

Wilcox B, Beckwith J, Greenwald R, Chu JJ, McAllister TW, et al. Head impact exposure in male and female collegiate ice hockey players. J Biomech. 2013; 47: 109-114. Ref.: https://tinyurl.com/yyt3dh8a

Reynolds B, Patrie J, Henry E, Goodkin HP, Broshek DK, et al. Quantifying head impacts in collegiate lacrosse. Am J Sports Med. 2016; 44: 2947-2956. Ref.: https://tinyurl.com/y2pvdx82

King D, Hecimovich M, Clark T, Gissane C. Measurement of the head impacts in a sub-elite Australian Rules football team with an instrumented patch: An exploratory analysis. Int J Sports Sci Coach. 2017; 12: 359-370. Ref.: https://tinyurl.com/yxux7qku

King D, Hume P, Brughelli M, Gissane C. Instrumented mouthguard acceleration analyses for head impacts in amateur rugby union players over a season of matches. Am J Sports Med. 2015; 43: 614-624. Ref.: https://tinyurl.com/y436zabt

King D, Hume P, Gissane C, Clark T. Head impacts in a junior rugby league team measured with a wireless head impact sensor: An exploratory analysis. J Neurosurg Pediatr. 2017; 19: 13-23. Ref.: https://tinyurl.com/y3o5zac9

King D, Hume P, Gissane C, Cummins C, Clark T. Measurement of head impacts in a senior amateur rugby league team with an instrumented patch: Exploratory analysis. ARC J Res Sports Med. 2017; 2: 9-20. Ref.: https://tinyurl.com/y689ax79

King DA, Hume PA, Gissane C, Kieser DC, Clark TN. Impacts to the head from match participation in women's rugby league over one season of domestic competition. J Sci Med Sport. 2018; 21: 139-146. Ref.: https://tinyurl.com/yxor4rdz

Brainard L, Beckwith J, Chu J, Crisco JJ, McAllister TW, et al. Gender differences in head impacts sustained by collegiate ice hockey players. Med Sci Sports Exerc. 2012; 44: 297-304. Ref.: https://tinyurl.com/yyhv7z43

King DA, Hume PA, Gissane C, Clark TN. Similar head impact acceleration measured using instrumented ear patches in a junior rugby union team during matches in comparison with other sports. J Neurosurg Pediatr. 2016; 18: 65-72. Ref.: https://tinyurl.com/y4jxeo3h

King D, Hume P, Gissane C, Brughelli M, Clark T. The influence of head impact threshold for reporting data in contact and collision sports: Systematic review and original data analysis. Sports Med. 2016; 46: 151-169. Ref.: https://tinyurl.com/y45m4xxe

Ng T, Bussone W, Duma S. The effect of gender and body size on linear accelerations of the head observed during daily activities. Biomed Sci Instrum. 2006; 42: 25-30. Ref.: https://tinyurl.com/y5hxesuj

Wu L, Nangia V, Bui K, Hammoor B, Kurt M, et al. In vivo evaluation of wearable head impact sensors. Ann Biomed Eng. 2016; 44: 1234-1245. Ref.: https://tinyurl.com/y5d6tjx9

Nevins D, Smith L, Kensrud J. Laboratory evaluation of wireless head impact sensor. Procedia Engin. 2015; 112: 175-179. Ref.: https://tinyurl.com/y6ot95ua

Lennon A. Measurement of head impact biomechanics: A comparison of the head impact telemetry system and X2Biosystems XPatch: Department of Exercise and Sport Science (Athletic Training), College of Arts & Sciences University of North Carolina. 2015.

Swartz EE, Broglio SP, Cook SB, Cantu RC, Ferrara MS, et al. Early results of a helmetless-tackling intervention to decrease head impacts in football players. J Ath Train. 2015; 50: 1219-1222. Ref.: https://tinyurl.com/yyqq7l4s

King T, Jenkins D, Gabbett T. A time–motion analysis of professional rugby league match-play. J Sports Sci. 2009; 27: 213-219. Ref.: https://tinyurl.com/yy5j9fgg

Crisco J, Chu J, Greenwald R. An algorithm for estimating acceleration magnitude and impact location using multiple nonorthogonal single-axis accelerometers. J Biomech Eng. 2004; 126: 849-854. Ref.: https://tinyurl.com/y66lfpua

Greenwald R, Gwin J, Chu J, Crisco J. Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery. 2008; 62: 789-798. Ref.: https://tinyurl.com/y4stjrbr

Urban J, Davenport E, Golman A, Maldjian JA, Whitlow CT, et al. Head impact exposure in youth football: High school ages 14 to 18 years and cumulative impact analysis. Ann Biomed Eng. 2013; 41: 2474-2487. Ref.: https://tinyurl.com/yyvjrfmu

Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009; 41: 3-13. Ref.: https://tinyurl.com/y5dwsmjq

Gabbett TJ. Physiological and anthropometric characteristics of elite women rugby league players. J Strength Cond Res. 2007; 21: 875-881. Ref.: https://tinyurl.com/y45avklm

King D, Hume P, Milburn P, Guttenbeil D. A review of the physiological and anthropometrical characteristics of rugby league players. Sth Afr J Res Sport Phys Ed Recr. 2009; 31: 49-67. Ref.: https://tinyurl.com/yyjrtz7c

Barnes B, Cooper L, Kirkendall D, McDermott T, Jordan B, et al. Concussion history in elite male and female soccer players. Am J Sports Med. 1998; 26: 433-438. Ref.: https://tinyurl.com/y2mbekrh

Broshek D, Kaushik T, Freeman J, Erlanger D, Webbe F, et al. Sex differences in outcome following sports-related concussion. J Neurosurg. 2005; 102: 856-863. Ref.: https://tinyurl.com/y4owo3l5

Tierney RT, Sitler MR, Swanik CB, Swaink KA, Higgins M, et al. Gender differences in head-neck segment dynamic stabilization during head acceleration. Med Sci Sports Exerc. 2005; 37: 272-279. Ref.: https://tinyurl.com/yyhpc8yh

King A, Yang K, Zhang L, Hardy W. Is Rotational Acceleration More Injurious to the Brain Than Linear Acceleration? In: Hwang NC, Woo S-Y, eds. Frontiers in Biomedical Engineering: Springer US; 2004:135-147.

Brown DA, Elsass JA, Miller AJ, Reed LE, Reneker JC. Differences in symptom reporting between males and females at baseline and after a sports-related concussion: A systematic review and meta-analysis. Sports Med. 2015; 45: 1027-1040. Ref.: https://tinyurl.com/y5envq2c

Iverson GL, Silverberg ND, Mannix R, Maxwell BA, Atkins JE, et al. Factors associated with concussion-like symptom reporting in high school athletes. JAMA Pediatr. 2015; 169: 1132-1140. Ref.: https://tinyurl.com/y5dnhg6y

Kerr ZY, Register-Mihalik JK, Kroshus E, Baugh CM, Marshall SW. Motivations associated with nondisclosure of self-reported concussions in former collegiate athletes. Am J Sports Med. 2016; 44: 220-225. Ref.: https://tinyurl.com/y3fcjnx9

Covassin T, Moran R, Elbin III R. Sex differences in reported concussion injury rates and time loss from participation: An update of the National Collegiate Athletic Association injury surveillance program from 2004–2005 through 2008–2009. J Ath Train. 2016; 51: 189-194. Ref.: https://tinyurl.com/y5lzjmuu

Garcés G, Medina D, Milutinovic L, Garavote P, Guerado E. Normative database of isometric cervical strength in a healthy population. Med Sci Sport Exerc. 2002; 34: 464-470. Ref.: https://tinyurl.com/yy7367xp

Jordan A, Mehlsen J, Bülow P, Ostergaard K, Danneskiold-Samsøe B. Maximal isometric strength of the cervical musculature in 100 healthy volunteers. Spine. 1999; 24: 1343-1348. Ref.: https://tinyurl.com/yx8s7f9e

Staudte H-W, Dühr N. Age- and sex-dependent force-related function of the cervical spine. Eur Spine J. 1994; 3: 155-161. Ref.: https://tinyurl.com/y3njjql2

Elana Farace, Wayne M. Alves. Do women fare worse: a metaanalysis of gender differences in traumatic brain injury outcome. J Neurosurg. 2000; 93: 539-545. Ref.: https://tinyurl.com/y6p4o6fy

Eckner JT, Oh YK, Joshi MS, Richardson JK, Ashton-Miller JA. Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads. Am J Sports Med. 2014; 42: 566-576. Ref.: https://tinyurl.com/y3txsmgf

Mihalik J, Guskiewicz K, Marshall S, Greenwald R, Blackburn J, et al. Does cervical muscle strength in youth ice hockey players affect head impact biomechanics? Clin J Sport Med. 2011; 21: 416-421. Ref.: https://tinyurl.com/y5nssaa9

Beckwith J, Greenwald R, Chu J, Crisco JJ, Rowson S, et al. Head impact exposure sustained by football players on days of diagnosed concussion. Med Sci Sport Exerc. 2013; 45: 737-746. Ref.: https://tinyurl.com/y65upena

Hausler J, Halaki M, Orr R. Player activity profiles in the Australian second-tier rugby league competitions. Int J Sports Psychol Perform. 2016; 11: 816-823. Ref.: https://tinyurl.com/y599dqa9

Twist C, Highton J, Waldron M, Edwards E, Austin D, et al. Movement demands of elite rugby league players during Australian national rugby league and European super league matches. Int J Sports Physiol Perform. 2014; 9: 925-930. Ref.: https://tinyurl.com/y5gg8nve

Siegmund G, Bonin S, Luck J, Bass C. Validation of a skin‐mounted sensor for measuring in‐vivo head impacts. Paper presented at: 2015 International Conference on the Biomechanics of Injury (IRCOBI), Lyon, France. 2015; Ref.: https://tinyurl.com/y5eo7tw2

Cortes N, Lincoln AE, Myer GD, Hepburn L, Higgins M, et al. Video analysis verification of head impact events measured by wearable sensors. Am J Sports Med. 2017; 45: 2379-2387. Ref.: https://tinyurl.com/y5md3szo

Press JN, Rowson S. Quantifying head impact exposure in collegiate women's soccer. Clin J Sport Med. 2017; 27: 104-110. Ref.: https://tinyurl.com/y4o2gj6a